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~‘but Is built using ccnventional technology. In other respects, the design
of the tube is similar to a production line IBCFA.

Performance of the fi rst experimental model is considered , in general ,
representative of the capabi lity of this design. Power output of more
than 3 kW and over 30 percent effi ciency was achieved in the middle of the
2— 4 GHz band, measured wi th 20 dB gain. Performance In the lower half of
the band degraded slow ly as frequency was reduced below 2.6 GHz , and de-
graded more rapidly as frequency was increased above 3.4 GHzA Substant ia l
power and efficiency increases we re observed for increased d)ive, indicat-
ing that a longer interaction space is desirable. Effi l.er(cy levels not
far different froni.those. at. 3 kW peak power output we)’e observed at 1 kW,
2 kW and -4’~ kW peak power output by adjusting the magneti c field and the
applied voltages.

A CFA bu ilt wi th a simulated. flat—substrate meander line produced
scmewhat less power output and efficiency , and less bandwidth , both total
(with sole tuning) and Instantaneous. Power output up to 2.6 kW with
normal rf drive and beam power (as above) was achieved , with operation
from 2 to 3.6 GHz. Design corrections for improved performance are
foreseen.

One ~~ the experimental tubes was rebuilt with the Medicus nickel
matr ix cat’hô~Ie. Representative results were not achieved because of
cathode cont inatlcn. However , results on another CFA show that
successful u~~\of~such cathodes Is likely in the CFA ’s of interest to ECOM .
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1. INTRODUCTION

The research and development effort of this program was di rected toward
the ul timate achievement of a low-cost injected beam crossed-field amplifier
(IBCFA). A major cost factor in present IBCFA’s is the meander slow-wave
structure, which incorporates a meander strip of copper and one separate
ceramic insula tor supporting each segment of the meander. By replacing the
set of insula tors with a single shaped-substrate which can be manufactured at
moderate cost , very substantial cost savings in both time and labor can be
achieved. An al ternative approach , using a flat continuous substrate instead

— 
of a shaped-substrate, was also explored. Both the shaped-substrate and the
flat-substrate concepts were originated by ECOM personnel , and have been the
subject of a previous study by C. Bates and J. Hartley of ECOM. An additional
area of study was the application of the Medicus type of nickel matri x cathode
to the IBCFA ’s Investigated here. Such cathodes represent a possible replace-
ment for the relatively expensive tungsten matri x dispenser cathodes which
have generally been used in IBCFA’ s.

The objective performance characteristics were as follows :

Frequency range 2 to 4 GHz
Peak power output 3 kW
Average power output 1 kW
Efficiency 35%

Gain 20 dB
Cathode voltage 7 kV (maximum)

These performance characteristics are in general quite similar to Northrop ’s
RW—619.

A further objective was to design an IBCFA in which the condition for 90°
phase drift per bar falls within the operation band. In the P14-619, ft  falls
just above the operating band. Successful results with this frequency falling
in the operating band lead to some signifi cant advantages. The pitch of the
line is greater so that construction is less di fficult , and part tolerances

are less stringent. Also , attenuation is less , thus Increasing efficiency.

1
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In additi on, the l ine becomes wider so that cathode emission density , beam
density , and thermal dissipation density are reduced , and the ultimate peak
and average power capability is increased . Since it is expected that this
technology will eventually be extended to I/J Band , these considerations
become especially important.

The principal purpose of this program was to demonstrate the operational
feasibility of the shaped-substrate and the flat-substrate meander line. To
demonstrate feasibil ity , existing CFA technology was used Insofar as possible ,
with the substrate configurations simulated by individual bars, instead of a

• one— piece shaped—substrate or a monolithic flat-substrate . The simulation of
the shaped—substrate and flat-substrate in such a manner allowed the use of a
large number of parts and sub-assemblies of proven design from production
CFA ’s. The development of the new technology necessary for supporting single—
piece ceramic substrates requires a major redesign of the total structure.

A CFA bu ilt wi th a simulated shaped—substrate meander line demonstrated
excellen t power and efficiency over an octave band. Peak power was over 3 kW
over much of the band wi th normal rf drive (30-40W ) and beam power (10.5 kW).
Power output up to 3.8 kW was achieved wi th increased rf drive . Efficient
operation for 1, 2, and 4 kW outputs was also demonstrated with adjustment of
operating parameters .

A CFA bu ilt with a simulated flat—substrate meander line produced some-
what less power output and efficiency , and less bandwidth , both total (with
sole tunin g) and Instantaneous. Power output up to 2.6 kW with norma l rf
drive and beam power (as above) was achieved , wi th operation from 2 to 3.6
GHz. Design corrections for improved performance are foreseen.

One of the experimental tubes was rebuilt with the Medicus nickel matrix
cathode. Representative results were not achieved because of cathode con-
tamination . However, resul ts on another CFA show that successful use of such
cathodes Is likel y in the CFA ’s of interest to ECOM.

2 
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2. SHAPED-SUBSTRATE MEANDER LINE

2.1 General Approach

The principal objective of the study of the shaped-substrate meander line
was to verify the performance characteristics of an IBCFA which incorporates
such a design concept. The test vehicle was a standard production CFA , type
RW—619, modified as necessary to incorporate a simulated shaped—substrate
meander line, together with gun modificat ions appropriate to the new line
wi dth .

It appears difficult if not impossible to fabricate a l ow—cost cerami c
meander substrate suitable for an IBCFA by grinding or other conventional
technology . ECOM personnel have recently begun to investigate the fabrication
of such substrates by laser cutting. A meander—shaped substrate on a support-
ing block is shown in Figure 1; the ECOM designed laser-cut ladder-shaped
substrate, with approximately equivalent electri cal properties , i s show n in
Figure 2.

For comparison, the structure used in previous CFA designs is shown in
Figure 3. Here the meander line is supported on individual cerami c insulators ,
and vanes between meander line segments are added to reduce dispersion of
phase velocity as a function of frequency. The ECOM design is intended to
reduce costs by replacing these individual bars wi th a one—piece substrate ,
and by achieving the required low dispersion wi thout the vanes between seg-
ments.

For the purpose of this investigation, the shaped—substrate was simulated
by an array of Individual ceramics of suitable length and cross section , as
shown in Figure 4. The electrical properties of the shaped-substrate are
duplica ted with ceramics easily fabricated by well established techniques .
The matching of thermal expansions Is not critical in this case. The m di—
vidual ceramics are set in grooves, following present production techniques.
This has the advantage of locating the position of the bars accurately. Its

performance characteristics are i dentical to the shaped—substrate if the

groove depth is adjusted so that the line—to—ground capacitance is the same.

3
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This approach is not of i tself low cost. However , its performance dem—
onstrates the electrical characteristics of an IBCFA wi th a shaped-substrate
meander l ine.

• 2.2 Cold—test Mode ls

The first undertaking was to explore experimentally the electri cal prop-
erties of the shaped—substrate meander line : phase velocity and dispersion ,
characteristic impedance , and coupling impedance . For convenience in fabri-
cating the initial experimental model , the dimensions were chosen to be twi ce
those given in the Statement of Work (Technical Guidelines ~4J—104), whi ch were
based on previous studies by Bates and Hartley of ECOM. The substrate thick-
ness was modi fied to take into account the grooves (O.010u deep) into which
the insulators were set. The beryllia cerami c material was simulated by
Stycast HiK 6 (Emerson & Cuming). The structure was like Figure 4, except
l iquid cooling was not required.

Measurements of the initial model indi cated values of d v , the delay
ratio , lower than desired (see curve 1, Fi gure 5). Increasing the wi dth led
to a satisfactory range of delay ratios (curve 2, Fi gure 5), but an impedance
of 60 ohms Instead of the 50 ohms specified by ECOM . Reducing the insulator
thi ckness gave an impedance of 50 ohms, and slightly greater delay ratio

-
- (curve 3, Figure 5). The last of these was used as the basis for the design

of the operati ng tube , scal ing In wavelength from an “operating band” shown i n
Fi gure 5 so that the phase shift of ‘~/2 radians per bar woulc~ occur at approxi-

• mately 3.5 GHz. The pitch was scaled further to give a value of delay ratio
of 17.2 at midband , the same as the RW-6 19. The actual dimensions in each of
these models are sumari zed in Table 1.

7
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Table 1. Summary of Cold Test Models.

Technical Model Model Model
• Guide lines No. 1 No. 2 No. 3

(S—Band line) (L-Band Cold test lines )

Hei ght (In.) 0.420 0.840 1.008 1.008
Pitch (In.) 0.040 0.080 0.080 0.080
Substrate Thickne ss (in.) 0.014 0.035* 0.035* 0.030*
Metal—to—Space Ratio 1:1 1:1 1:1 1:1
Characteristi c Impedance (ohms ) 50 -— 60 50

-. 
-
. 

*Insulators set Into grooves 0.010” deep

Coupl ing impedance measurements were made on the last model , using the method
described by Arnaud1. The results are shown in Figure 6.

A further test was run to investigate the di fference between the meander—
shaped substrate and the ladder-shaped substrate. The cold-test model was
modified as shown In Figure 7. Delay ratio measurements comparing the two
configurations are shown in Figure 8. The di fference approaches the limi t of
experimental error. These results indicate that the ECOM-developed l adder-
shaped substrate represents a practical electrical approach to achieve ulti-
mately a one—piece , l ow—cost substrate.

Delay line dispersion for the meander shaped substrate was correlated
wi th theory derived from Leblond and Mourier2:

CO5 ICw 
= dos ~

sin ~ (1)
0

9
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In the above:

= Propagation factor of a wave along the length of a delay line bar
w = Length of each bar (width of the line)
0 = Phase between one bar and the next =

• = Capacity per unit length between two adjacent bars
= Capacity per unit length from one bar to ground (base plate)

Calculated results show an excellent fit for 7
~
/ 
~ 

= 7.5 and ,c /,c
~ 

=

1.47, where is the free space propagation factor given by “.‘/c.

The delay line design characteristics derived from the cold test rneas-
urements are sumarized In Table 2.

2.3 Electrical Design of Operating CFA

The electri cal design of the CFA wi th shaped—substrate meander line was
made to be like the production type RW-619 in all respects where appropriate .
For examp le , since the frequency range and phase velocities were approximately
the same , the sole—to— line spacings were the same. Since the width of the
line used here was greater than that of the RW—6 19 , the so le , gun , co llector
and pole-piece gap were wi dened acco rdingly.

Some approximate ca lculations of small-signal gain using the work of
Gould3 , and large signal characteristics using the work of Sobotka 4 , were

carried out. The rate of gain over the frequency band was calculated to be at
least as great as the RW-619, so that no change of over-al l line length (about
three inches) appeared necessary.

Since a revision of the gun was required , a recently developed improve-

ment in gri d design , not yet introduced in the RW—619 , was used In this CFA .
The gri d openings were extended around the front edge of the gri d box , as

• descri bed by Doh ler5 (see Figure 9). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Table 2. Low Cost CFA Wi th Simulated Shaped Substrate : Line Specifications.

ECOM
Statement CFA
of Work Design

Characteristic Impedance (ohms) 50 50

Circuit Height (inches) 0.42 0.576
Ci rcuit Pitch (inches) 0.040 0.048
Circu it Length (Inches) 3.0 3.0
Substrate Thickness (inches ) 0.014 0.012*

-. Frequency for 90° Phase Shift (GH2 ) 3.0—3.5 3.5

Number of Circuit Elements 75 62
Circuit Metal—To—Space Ratio 1:1 1:1

Copper Line Thickness (inches) ——- 0.015

*projectjon above line block: Groove depth = 0.0175”.

Measured Characteristics
Delay Ratio (dv)

Frequency (GH2 )

2.0 3.0 4.0

Shaped—Substrate Design 16.0 17.2 18.4
Production CFA 16.2 17.2 18.1

Coup ling Impedance At Level Of Line (ohms)

Frequency (GHz )

2.0 3.0 4.0

Shaped—Substr ate Design 59 52 45
F Production CFA 52 50 47

It-

14
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2.4 OperatIng Characteristics

When the first model of the shaped—substrate meander line was built for
actual CFA operation , cold tests of phase veloci ty were made. These results
are shown In Figure 10. The delay ratio was slightly higher than predicted
from scaling the cold-test model ; the frequency for 900 phase shift per bar
was 3.33 GHZ.

The performance objectives of 3 kW output and 35% efficiency were either
achieved or closely approached in the first model. Power output as a function
of frequency using a double-ridge waveguide water load and a coax—to-waveguide
transition Is shown in Figure 11. Similar measurements are shown using a
coaxial water load are shown in Figure 12. Better performance wi th the coax-
ial load was expected at the low end of the band because the waveguide is
close to cut-off. The lower power measured with the coaxial load at the high
end of the band is attributed to losses In the directional coupler , connec tors ,
etc. Measurements of power output as a function of rf dri ve power were made
at 2.8 and 3.0 GHz (see Figure 13). In both cases , power output and effi-
ciency were still increasing with drive power at the maximum power attainable
with the driver tube (120 W at the input to the CFA). This indicates that the
over—all gain of the tube can be increased by means of a longer delay line to
produce more powe r, gain , and efficiency. An additional 10 bars (0.480”) of
delay line length is estimated to be needed. Maximum efficiency was 36%, not
including drive power. Useful instantaneous bandwidth in mi d-band appears to
be about one—half octave . Gri d control was effective with the beam cut off at
a gri d potential of -640V with respect to the cathode .

Measurements of spurious signals were made systematically. All spurious
signal s found with rf dri ve at 30 W were below the -15 dB limit wi th respect
to the mai n signal specified for production tubes. (See Fi gure 14.) Nearly
all , and all of the strongest ones , were of the “parametric ” type , w h i c h  are

absent except under non-linear rf operating conditions , and which follow the
pattern :

= mf 0 -
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Figure 13. Power Output of IBCFA With Coaxial Load as a Function of
RF Drive Power.
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where m and n are integers. The strongest pattern corresponded to rn = 1 and
n = 1. Others were found for m = 1, n = 2 , for m = -2, n = 3, and for m -1,
n = 4. In all of these cases, f0 

= 7.02 GHz, which corresponds to the upper
edge of the first stop band. No oscillations are found at this frequency
except in the presence of an rf dri ve signal strong enough to produce a non-
linear characteristic In the electron beam.

Measurements were made at other values of peak beam current and cathode
potential . Figure 15 shows power output as a function of frequency over the
band with sole voltage optimized at each reading for a beam current of 2.1 A
peak. Optimum combinations of current , vol tage , and magnetic field were
sought for operation at 2 •kW peak power and 1 kW peak power. Good results
were obtained for the following settings for 2 kW peak output:

I
Frequency 3.0 GHz
Cathode Voltage 5.8 kV
Beam Current 1.0 A
Magneti c Fi eld 2200 Gauss
Driver Power 120 W

- 

- 
Efficiency (neglecting dri ve) 34%

— The following settings produced good results at 1 kW peak power output:

Frequency 3.0 GHz
Cathode Voltage 5.0 kV
Beam Current 0.7 A
Magnetic Field 2100 Gauss
Driver Power 120 W

EfficIency (neglecting dri ve) 28%

One more CFA was bu ilt to the same design. Measurements of thermal
conductivity from the meander line to the support block indicated much better

bonding than the first tube. This line should have been capable nf full
specificati on average power wi th a comfortable margin. When tested , this

model required excessive accelerating anode voltage for operation. The

_ _  • • 
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greatest beam current achievable was 1.2 A peak at 4.8 kV on the accelerating
anode with the same magnetic field as for the previous CFA wi th full peak
current. Higher values of voltage led to excessive current interception by
the accelerating anode . Maximum peak powe r was about 1.2 kW. Triode meas-
urements of the cathode-grid-accelerator system wi thout magnetic field showed
a ,i.i of about 8, as compared wi th 4 for the previous model . The tube was
opened, and it was found that the grid—to—cathode spacing was too great by
about 0.004”. This led to excessive shadowi ng of the cathode surface by the
grid bars. This tube was set aside for a subsequent experiment wi th the
Medi cus type nickel matrix cathode.

-.

I
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3. FLAT SUBSTRAT E MEANDER LINE

3.1 General Approach

A sti ll lower cost method of meander line construction is a flat con-
tinuous substrate instead of the shaped substrate. Possible disadvantages of
the flat substrate are:

(1) Greater dispersion and therefore reduced bandwidth;

(2) Area between bars subject to metal lization by evaporation or sput-
tering, leading to deterioration of performance.

The performance objectives were the same as before.

To make use of parts comon to production CFA ’s while obtaining an
adequate evaluation of the performance of a CFA wi th a flat-substrate meander
line, the flat substrate was simulated by an arrangement of indiv idua l bars .
The manner of simulation is comparable wi th that used to simulate the shaped
substrate; the only difference is adding additional dielectric material be-
tween the individual line support ceramics , as in Figure 16.

3.2 Col d-Test Model

• To arrive at the actual dimensions to be used on the line , the same
large—scale meander structure used previously (see Section 2.2) was rebuilt
with a flat substrate instead of the simulated shaped substrate. As before ,
the substrate was made of Stycast H1K6. The thickness was adjusted experi-
mentally to produce a characteristic impedance of 50 ohms. Phase veloc ity
measurements were then made from which the values of ~ /,c 0 (the dielectric
l oading) and 7

~
/ ~~ (the ratio of bar-to-ground capacitance to bar-to-ba r

capaci tance) could be determined . (See Equation (1), Section 2.2). Previous
experience , Including the work descri bed earlier in this report, indicates
that if these quantities are known, the wi dth of the line (length of each bar)

can be adjusted for the correct delay ratio. The requirement is that all
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dimensions transverse with respect to the length of the bar be scaled faith-
fully. The values found from the cold-test model were: = 1.84, 

~~~~~= 11. The values of 
~o”~~i 

found from cold test correspond to quite low
dispersion.

3.3 Operating CFA wi th Simulated Fl at Substrate

The cold test results indicated much higher dielectri c loading (i.e.,
ic/sc 0) In the flat substrate configuration than in the shaped , as expected.
Consequently the line width was substantial ly less: 0.480” instead of 0.576”.
The width of the gun and sole were adjusted accordingly.

The simulated flat substrate , wi th the ceramic pieces that actually

support the meander line mounted in grooves, is shown in Figure 17.

Cold test measurements of the line showed higher characteristic impedance
than expected (60 ohms Instead of 50). It also showed greater dispers i on and
a lower delay ratio. Results are summarized in Table 3. Fitting the observed
data to the dispersion characteristic of Equation (1), the values were:

= 1.77, 
~o’~~i 

= 6.1. In simulating the flat substrate , the approxi-

mations made to achieve an equivalent capacitance from line to ground ( ~v~ )
were not accurate enough. On the other hand , the bar-to-bar capacitance
remained about the same as predi cted.

Operating performance characteristics are shown in Figure 18. The

magnetic field and voltage were set for optimum efficiency . Power output and
efficiency were below what was expected from data on coupling impedance and
attenuation. The sub—standard performance Is attributed at least in part to
the lower delay ratio than that for which the beam injection and interaction
space were designed. There Is an Instantaneous bandwi dth of 2.4 to 3.4 GHz
where the optimum sole voltage was 3.0 kV , except for sole voltage adjustments
made to improve power holes at 2.7 and 3.3 GHz. This range is better than
expected. Measurements above 3.6 GHz are not included in Figure 18 because

high levels of spurious signals made these values meaningless. The onset of

strong spurious signals as frequency was raised above 3.6 GHz was quite abrupt.
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Table 3. Low Cost CFA With Simulated Flat Substrate Line: Specifications.

Statement CFA
of Work Des ign

Characteristic Impedance (ohms) 50 60
Circuit Height (inches ) 0.42 0.480
Circuit Pitch (inches ) 0.040 0.048
Circuit Length (inches ) 3.0 3.0
Substrate Thickness (inches ) 0.014 0.021*
Frequency for 900 Phase Shift (GHz ) 3.0-3.5 3.5
Number of Ci rcu i t  El ements 75 62

Circuit Metal-To-Space Rati o 1:1 1:1

*projectj on above line block: Groove depth = 0.0165”.

Measured Characteristics
Delay Ratio (dv)

Frequency (GHz)
2.0 3.0 4.0

Flat Substrate Design 14.3 15.6 17.4
Production CFA 16.2 17.2 18.1

Coupling Impedance At Level Of Line (ohms)

Frequency (GHz)

2.0 3.0 4.0

Flat Substrate Design 85 77 57
Production CFA 52 50 47

i i  
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After operation , the meander line attenuation was re-measured. The
values of attenuation over the length of the line were increased over the
ini tial values by as much as 1.5 dB. The “before ” and “after” curves are
shown in Figure 19. At least part of the increase is the result of increased
l ine—to—ground conduction along the edges of the line support insulators and
the insulators which were added to simulate the flat substrate. The increase
in attenuation accounts in part for the low power and efficiency at the low
end of the band.
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• 4. MEDICUS NICKEL MATRIX CATHODE

The Medicus nickel matrix cathode represents an important advance over
previous nickel matrix cathodes in its combinati on of high performance and
potential for low cost. A mixture of nickel powder and alkaline earth carbon-
ates is sintered on a nickel base , then rolled into a thin sheet in several
steps with anneal i ng between steps. The resulting sheet may be cut into
appropriate sizes, or shaped when necessary (e.g., spherical for Pierce type
guns). It can be readily mounted on whatever supporting structure is re-
quired. While the maximum available emission density is not as high as in the
tun gs ten matr ix ca thode , which is now used in injected beam CFA ’s, the work to
date shows that enough emission density may be achieved for the requirements
of the l ow-cost CFA’s wh ich are the subject of this program. The manufactur-

-

~~~~ 
. ing cost of the Medicus cathode is much less than the tungsten matrix cathode

• - - because of the machining and processing steps required by the latter. An
additional advantage of the Medicus cathode over the tungsten matrix cathode
is greater uniformi ty of emission.

The struc ture wh i ch was use d for M~dicus cat~iodes for CFA ’ s is shown in
Figure 20. A base block is made fcr supporting the emitter , and for confining
the heater. Two methods of attaching the emi tter to the base block were
explore d , sintering with added nickel powder and laser welding. The sintering
process made a poor bond; the laser welding was quite successful.

Low-cost methods of making the cathode base block were considered . If
th i s i s a mach i ned par t, whether it is molybdenum (as used with tungsten
matri x cathodes ) or nickel , much of the cost advantage over tungsten matri x
cathodes is lost. It appears possible to make the part from nickel powder ,
pressing in a mold , then si nter ing.  Vendor cost es tima tes i n di cated an in-
itial tooling charge of about $2000, after which the cost per part in large

quan titi es Is less than ~1. A fi nal mac hi ne cut or gri nd necessar y to assure
moun ting surface flatness can be done in large batches. The cost of the
latter operation wou ld still be quite smal l as compared with the cost of
machining the whole part.

• ~~~~~~~• _•--- ---~~~~~~- - - - • •  ~~~~~~~~~~~~~~~~~~~~~~
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For this program two different types of cathode base blocks were made. A
sample block of sintered nickel material was obtained from the prospective

• vendor of sintered nickel parts ; cathode base blocks were machined from this.
As a back—up , molybdenum base blocks with potted heaters were procure d from
the vendor of tungsten matri x cathodes ; these were like the cathode-heater
assemblies used In the first phase of this program except that the imp regnated
tungsten matri x was omitted. Because of delays by the supplier of heater
coi ls , it was necessary to use the molybdenum block wi th potted heater.

The second tube model with simulated shaped-substrate meander line was

H. rebuilt with a Medicus cathode like that shown in Figure 20. A new gun assem-
bly fixture was made to assure correct grid location. The gun assembly was
mounted in a glass envelope which was evacuated , to determine the heater power
necessary for the correct temperature of the Medi cus cathode for CFA operati on
(900 to 950°C brightness temperature).

After the tube was exhausted , emission was very poor. The emitter had
evi dently become contaminated. The maximum output power which could be
achieved was 1.67 kW with 1.2 A beam current.

Since the results achieved in this tube were not definitive , it is of
interest to summari ze briefly here the results achieved on another program.*
A Medicus type cathode , made in the same way (Figure 20), was moun ted in a
standard production S-Band C~A. The maximum beam current was 1.3 A peak at
930°C cathode temperature . This represented the temperature -limi ted condi-
tion . For higher temperatures the current fell rather than increasing.
Performance of the CFA with this and other values of beam current was not
distinguishable from that of the same CFA wi th a tungsten matrix cathode
operating under the same conditions. Tests were made at a temperature of

9000C and beam current of 0.9 A peak. It was observed that the current
drooped by about 10%, more or less linearly with time , over a 100 ~sec pulse.
The amount of droop was independent of duty factor when the repetition rate
was vari ed.

*Contract No. F33615-76-C-1022, Air Force Av ionics Laborato ry.
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When undertaking to apply these results for emission density to the CFA
with a shaped—sub strate meander lIne in S-Band , it must be considered that
such a CFA has a cathode area 36% greate r than the production CFA ’ s because
the line Is wi der. For the same current density, a peak current of 1.3 A in
the production CFA’s scales to 1.77 A. This is not a comfortable margin for a
CFA designed for 1.5 A , but the results suggest that further work on the
Medicus cathode is worthwhile for the present application .

I



5. CONCLUSIONS

The fi rst model of the tube with the simulated shaped-substrate meander
line clearly showed the feasibility of this type of rf circuit. Efficiency of
up to 36% was demonstrated, with power output of 3 kW over much of the 2-4 GHz
band. Power output of more than 4 kW was achieved with increased beam current ,
and efficient operating conditions for 1 kW and 2 kW output were demonstrated.
Some minor design changes should lead to signifi cant improvements in perform-
ance. The fact that efficiency was continuing to increase with increasing
cathode—to—line voltage suggests that the gun position should be modified to
produce highest efficiency with lower voltage and higher current (input DC

power held constant). The result would be higher gain and greater instanta-
neous ban dwidth . Increased gain is important , since it was observed that
Increasing the rf drive power leads to increased power and efficiency . It has
been estimated that for the operating conditions of these tests , an additional
10 bars (0.480”) of line length would be desirable to increase gain suffi-
ciently.

It was shown by cold tests that the ECOM-developed ladder-shaped sub-
strate with a meander line is not significantly di fferent from a meander-
shaped substrate in electrical characteristics .

Although power output and efficiency of the CFA with a flat-substrate
meander line were not as good as with a shaped—substrate meander line , the
flat substrate may still be of interest for some applications , suc h as in
expendable transmitters . The cold—test model indi cated the possibility of

greater bandwidth than had been supposed. At least part of the deficient
performance of the operating model with a simulated fl at substrate can be
attributed to the fact that the capacitance from line to ground in the cold-
test model was not accurately reproduced in the operating model. The con-
duction from line to ground which appeared after operation could not occur in

an actual flat substrate model . The possibility of bar-to-bar conduction
whi ch might build up after a period of time would not be of great concern in

the special application of expendables , and the lower cost would be of in-

terest.
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- The Medicus nickel matrix cathode appears to be working close to its
present limi t In CFA applications. It is not as impervious to mishandling

- (I.e., poor vacuum , contaminat ion, etc) as the tungsten matri x cathode. It
has been demonstrated that the laser welding technique makes it easy to con—

— struct cathode assemblies in geometries suitable for CFA ’s. With better
understanding of such cathodes in the future, they may prove quite attractive
for CFA ’s.

I
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6. RECOMMENDATIONS

Further work on the shaped-substrate meander line should now go beyond
the stage of simulated operating models , and proceed to actual embodiments of
this configuration. Interim experimental tubes may still be made using pro-
duction tube parts extensively elsewhere than for the line , but a total low-
cost structure should begin to be considered . Future tube designs require
further design calculations of the gun , and of the interaction space based on
large-signal theory. Recent experience not only from the present program but
also from other R & 0 efforts should be brought to bear. For example, an
optics modifi cation in a recent study by Northrop for the Air Force Avionics

Laboratorj led to an increase in gain of 5 dB while still maintaining stabil-
lty .* In the same study, an analysis of spurious signals of the type which
predominated in the data shown in Figure 14 indicates that they may be reduced
by a modi fication of the shape of the bends of the line to reduce electrical
discontinuities. Such a modification could be easily introduced into the

shaped—substrate meander line.

The flat-substrate meander line should not be abandoned merely on the
basis of sub—standard results on one tube model , s ince the reasons for the

• 
• defi ciencies of that model are understood at least in part. Some previous

work on flat-substrate meander lines for X_Band** was also disappointing , but
here also the capacitance line-to—ground was too low , and in addition the
photo—etched line was not uniform enough. Improved technology now possible

• should improve this. This approach still has interesting possibilities , for
• example expendable applications, and for frequency ranges In which the shaped

substrate Is unduly di ffi cult to fabri cate. Any further work on flat-sub-
strate meander lines should be done with actual flat substrates , rather than

simulated flat substrates.

F;-

*Contract No. AF33615-75-C-1098.
**Contract No. NObsr 89504, performed by Warnecke Electron Tubes Inc. (now
Northrop) and CSF for Naval El ectronics Systems Command.



_____________ - - - 
- .— - — — - --

I

Because of its potential for low cost and improved pertur~a~ce the
Medicus cathode is being pursued by Northrop on other development programs .
The base block made of si ntered nickel should be tested as a method of cost
reducti on .

In general , whi le performance of CFA ’ s has been upgraded and reliability
and manufacturabi lity have improved over the past several years , cost reduc-
tion has been inhibited because of the modest production quantities required.
The approaches described here represent some steps which are needed to bring
costs down for larger production quantities .

I
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